Coherent states and rational surfaces
نویسندگان
چکیده
منابع مشابه
Gazeau- Klouder Coherent states on a sphere
In this paper, we construct the Gazeau-Klauder coherent states of a two- dimensional harmonic oscillator on a sphere based on two equivalent approaches. First, we consider the oscillator on the sphere as a deformed (non-degenerate) one-dimensional oscillator. Second, the oscillator on the sphere is considered as the usual (degenerate) two--dimensional oscillator. Then, by investigating the quan...
متن کاملAn Entanglement Study of Superposition of Qutrit Spin-Coherent States
Considering generalized concurrence as the criterion of entanglement, we study entanglement properties of superposition of two qutrit coherent states, as a function of their amplitudes. These states may attain maximum entanglement or no entanglement at all, depending on the choice of the parameters involved. The states revealing maximum entanglement also display the maximum violations of the Be...
متن کاملStructural and Quantum Optical properties of Coherent States on the Non-Flat Surfaces: Nonlinear Coherent States approach
In this paper, we investigate the relation between the curvature of the physical space and the deformation function of the deformed oscillator algebra using non-linear coherent states approach. For this purpose, we study two-dimensional harmonic oscillators on the flat surface and on a sphere. With the use of their algebras, we show that the two-dimensional oscillator algebra on a surface can b...
متن کاملK3 Surfaces, Rational Curves, and Rational Points
We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...
متن کاملK3 Surfaces, Rational Curves, and Rational Points
We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2010
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/43/25/255205